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Abstract—Cross-device scenarios have become increasingly
common, where non-independently and identically distributed
(non-IID) data is generated and stored in different devices.
However, the existing cross-device NAS methods only search
for a fixed architecture for different devices, neglecting that
different devices have varying hardware characteristics and data
distributions. In this paper, we propose a novel NAS framework
that can customize the most suitable architecture for each device
and its associated dataset. Specifically, we propose a decoupled
data feature extractor and a device feature extractor to characterize
the complex distributions of the different datasets and diverse
hardware features. Then, we propose a prototype matcher to
customize the operators and shape selection parameters of
architectures. Experiments on ImageNet and CIFAR-10 show that
our method can discover more efficient and effective architectures
in cross-device scenarios than the existing approaches. To the
best of our knowledge, this is the first exploration on customized
cross-device NAS problem.

Index Terms—Neural architecture search, Cross-device, Non-
IID

I. INTRODUCTION

Deep neural networks have achieved great success in many
fields, such as image classification, speech recognition, ma-
chine translation, and so on. In order to automatically design
more effective and efficient model architectures, neural archi-
tecture search (NAS) [1] has been proposed as an emerging
research field. The goal of NAS is to automatically design
neural networks by searching for architectures that work the
best for a given task. To date, NAS has achieved great success
in designing neural network architectures [1]–[4]. Addition-
ally, NAS can deal with resource-constrained scenarios for
specific devices, e.g., by limiting the model size, inference
latency or other metrics on a target device. With appropriate
model designs and resource constraints, hardware-aware NAS
methods [5]–[8] can discover efficient yet effective neural
network architectures for various devices, such as mobile
phones, CPU, and, GPU.

The proliferation of diverse devices in our daily lives has led
to the availability of massive amounts of image data, which is
generated and stored on various devices. For example, people
take photos using different types of phones and process their
images using different hardware ranging from edge devices to
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GPU servers. For these cross-device scenarios, different hard-
ware have different characteristics and capabilities, leading to
diverse architecture performance in terms of efficiency metrics
such as latency. Moreover, the associated images stored in
different devices are usually non-independently and identically
distributed. For example, images in different devices may
focus on different objects, have different backgrounds and
shooting conditions, or are for different purposes.

Cross-device NAS is further proposed to automatically de-
sign architectures in cross-device scenarios [9], [10]. However,
the existing cross-device NAS methods only search for a
single architecture for all datasets, neglecting diverse device
characteristics and associated complex data distributions. As
a result, the searched architectures may not perform optimally
in each device.

In this paper, we study customized cross-device NAS, which
aims to automatically customize the most suitable architecture
for each device and its associated dataset. This problem is
highly non-trivial due to the following challenges. Firstly,
the characteristics of diverse devices and datasets need to be
properly modeled in a joint space to share knowledge across
devices while customizing efficient and effective architectures
for each device. Secondly, the non-IID nature of datasets
makes it challenging to model the complex interaction between
datasets, devices, and architecture performance.

To solve these challenges, we propose Customized Cross-
Device Neural Architecture Search (CCDNAS) approach to
customize the most suitable architecture for each device in
the cross-device learning scenario under resource constraints.
Specifically, we first design a decoupled dataset feature ex-
tractor, which captures the characteristics of the datasets
at different scales to comprehensively model the non-IID
dataset. Then, we design a device feature extractor to learn
the characteristic and capability of the target device by mea-
suring different neural network operators, which serve as
important factors in customizing architectures in cross-device
scenarios. We further project the dataset feature and device
feature into a joint space, which can capture complex data
distributions and diverse device properties. Lastly, we propose
a prototype matcher to obtain the operator selection parameters
and shape selection parameters from the extracted features,
and customize latency-constrained neural architectures using



a hardware-aware latency regularizer. We also adopt a super-
network in the performance estimation strategy to ensure the
efficiency of our proposed method. Experimental results on
ImageNet and CIFAR-10, two representative image datasets,
demonstrate that our proposed method can search for more
efficient and effective architectures than the existing NAS
methods in cross-device scenarios.

Our contributions are summarized as follows:
• We study the problem of customizing the optimal neu-

ral architecture for each device in cross-device learning
scenarios with non-IID datasets. To the best of our
knowledge, we are the first to study this critical problem.

• We design a decoupled dataset feature encoder and a
device feature extractor, which can effectively character-
ize the features of non-IID datasets and diverse devices,
respectively.

• We further propose a prototype matching method together
with a hardware-aware latency regularizer to search for
efficient and effective architectures which are customized
for different devices while sharing knowledge across
devices.

II. RELATED WORKS

A. Neural architecture search

Neural architecture search, the process of automatically
designing optimal neural network architectures, is an important
branch of automated machine learning. [1], [3] used rein-
forcement learning to search for neural architectures, rep-
resenting the architecture of a neural network as a set of
parameters. An RNN is used as a controller to generate
architecture parameters, which is optimized according to the
performance of the architecture (such as accuracy) during the
search process. To reduce the search cost, [2], [11] proposed
differentiable method that constructs hybrid architectures by
mixing the output of each possible architecture, enabling the
use of gradient-based optimizers during searching. In addition
to using reinforcement learning and differentiable strategies,
[12], [13] and others have also explored the use of evo-
lutionary algorithms in neural architecture search. Recently,
some works focused on searching for efficient architectures for
resource constrained scenarios, enabling the searched models
to achieve the best results under resource-constraints, such
as MobileNetV3 [14], ProxylessNAS [15], MnasNet [8], FB-
NetV1 [5], and FBNetV2 [6].

B. Neural architecture search on non-IID datasets

In many real-world scenarios, the data of a task often exists
in the form of many non-IID datasets, which brings challenges
for the design and training of the model. Some federated neural
architecture search methods [9], [10] search for a common
model architecture for these non-IID datasets under privacy
constraints. A recent work [16] extends ProxylessNAS [15]
into a federated learning framework while considering mul-
tiple devices, dividing several non-IID datasets into subsets
with similar characteristics and searching for architectures for
each subset. However, these methods do not consider how

to customize architectures for each device, which is critical
because the architecture that is optimal for the overall data is
not necessarily optimal for individual datasets and devices.

III. PROPOSED METHOD

This section presents our CCDNAS approach, which is a
NAS framework with cross-device under resource constraints.
To obtain architectures that can be adapted to different devices
and associated datasets, we learn device features and dataset
features extracted by our feature extractors to customize the
architecture choice. The architecture is generated from the
features using a prototype-based customizer. During searching,
the model parameters of different architectures are shared via a
super-network containing all possible choices of operators and
shapes, which is synchronized across devices. The framework
of our method is demonstrated in Fig. 1, and the overall
algorithm is available in the appendix.

A. Problem formulation

Let M = {mj} be a search space of neural network
architectures and {(Hi, Ti, D

tr
i , D

val
i )}Ni=1 be a collection of

N devices, where Ti is the hardware metric constraint of
device Hi, Dtr

i and Dval
i represents the training and validation

dataset on device Hi, respectively. Our goal is to find the
best architectures for each device from the architecture space
according to the validation accuracy while satisfying the
specific hardware constraints. This problem can be formally
described as follows:

m∗i = argmaxm∈Mi
A(m, θ(m);Dval

i )

s.t. Mi = {m | m ∈M ∧M(m;Hi) ≤ Ti}
θ(m) = argminθ L(m, θ;Dtr

i )

, (1)

where A(m, θ;D) represents the accuracy of architecture m
with parameter θ on dataset D,M(m,H) represents the hard-
ware metric (e.g., inference latency or energy) of architecture
m measured on device H , L(m, θ;D) represents the loss of
architecture m with parameter θ on dataset D.

B. Decoupled dataset feature extractor

Cross-device scenarios contain diverse devices with differ-
ent characteristics, capabilities, and non-IID datasets. Captur-
ing the key features of these devices and datasets is important
for cross-device NAS. We propose the joint dataset and device
feature extractor to capture both datasets and device features
in a joint manner.

The first part of the joint dataset and device feature extrac-
tor is the Decoupled dataset feature extractor. Considering
that the dataset feature needs to be independent of the order
of data in the dataset and the feature extractor needs to be
applied to datasets with different sizes, we design a single-
data feature extractor F (·) and a data feature aggregator G(·).
In our work, we use a classical CNN backbone ResNet18 as
the single-data feature extractor F (·) to generate the hidden
features of the dataset. For the data feature aggregator G(·), we
first take the average of all the single data features to capture
the global feature of the dataset. Then we use fully-connected
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Fig. 1: The framework of CCDNAS. On each device, the features of the device and the associated dataset are extracted with
the joint feature extractor. The prototype matcher then produces shape customization and operation customization. During
searching, the weights of the architectures are shared via a super-network, which is synchronized across all devices, and the
latency of the searched architectures are constrained by the hardware-aware latency regularizer.

layers to process the final feature, i.e., the dataset feature is
obtained by applying F (·) and G(·) as follows:

fD = G

(∑
d∈D

F (d)

|D|

)
. (2)

In order to speed up the feature extraction process, we
replace the global average with an exponential moving average
during searching:

aη(t) = (1− η)aη(t− 1) + ηF (d(t))

fη(t) = G(aη(t)).
(3)

where t is the index of training iterations, d(t) is the training
data in this iteration, fη(t) is the extracted dataset feature in
this iteration, and η is the decay coefficient.

In this process, η controls the influence of different batches
of data. The choice of η can influence the characteristics of
the extracted feature. A large choice of η only allows the
feature extractor to see a small amount of data, making it
more likely to produce features common to each individual
data. On the contrary, a small choice of η can lead to features
about the diversity of data. Therefore, in order to decouple the
characteristics of different scales of the dataset, we construct
multiple dataset feature extractors with different η values and
combine their results as the final dataset features:

fD = [fη1 , fη2 , . . . , fηk ]. (4)

To ensure the consistency and order independence of the
feature extractor, we further introduce a consistency loss to
regularize the feature differences between iterations:

Lfeat =
∑
i

‖fηi(t)− fηi(t− 1)‖2. (5)

C. Latency-wise device feature extractor

The second part of the joint dataset and device feature
extractor is the Latency-wise device feature extractor. The goal
is to extract knowledge about device characteristics to help the
search process, considering that operations perform differently
on different devices, e.g., efficient operators on one device
may become inefficient on another due to device structure and
operator implementations. In addition, we also need detailed
information about the efficiency of operators to search for
architectures under specific resource constraints. Therefore, we
propose latency-wise feature extractor to encode such device
knowledge.

Device features need to reflect the performance of ar-
chitectures on the given device. Because the architecture is
composed of operators, the performance of the architecture
can be reflected by the performance of the operators. In our
proposed method, we focus on operator inference latency,
which is an important metric in hardware-aware NAS [8],
[14], [15]. Notice that our method can be easily extended
to contain more device metrics, which we leave for future
works. We measure the inference latency of all operators in the
search space directly on all devices. These measured metrics



are collected into a vector as the representation of the device.
We further use an MLP to process the vector into the final
device features:

fH = MLP([M(o1, H),M(o2, H), . . . ,M(on), H]), (6)

where {oi} are the operators in the search space, M(o,H)
represents the inference latency of operator o measured on
device H .

D. Architecture customization with prototype matcher

After jointly extracting dataset and device features, we
search for customized architectures on different devices and
their associated datasets through customizing proper opera-
tions and network shapes for them. Inspired by [17], we use
the extracted features as the input of the prototype-based archi-
tecture customization module to obtain specific architectures.
For each layer in the search space, we represent the candidate
operators with learnable prototype vectors vo,i. The operator
choice po,i is determined by calculating the cosine similarity
between feature vectors and prototype vectors.

po,i =
exp(p̂o,i)∑
j exp(p̂o,j)

, p̂o,i = [fD, fH ] · vo,i
‖vo,i‖2

, (7)

where [·, ·] denotes concatenation. The choice of channel width
ps,i is determined in a similar way using prototype vectors vs,i.

In order to avoid mode collapse, i.e., all prototype vec-
tors become very similar and indistinguishable, we use the
distances between prototype vectors as a regularization loss
Lreg. For each layer of the hybrid architecture, its output is
defined by mixing the outputs of all candidate operators and
channel widths according to ps and po. The parameters of the
hybrid architecture are shared via a super-network to reduce
the amount of computation during searching.

E. Hardware-aware latency regularizer

To satisfy the hardware metric constraints, we further design
a hardware-aware latency regularizer Lh to limit the size of
the generated network architectures. We treat the operator and
shape choices as probability distributions and define Lh as
the expectation of a cost function C(m;Hi) over architecture
m and device Hi. We use an unbiased gradient estimate and
compute Lh as follows:

Lh =
1

k

k∑
i=1

log(po(mi)ps(mi))C(mi;Hi), (8)

where m1, . . . ,mk are architectures sampled from the distri-
butions po and ps. The cost function C depends on which
hardware metric is used. In the case of inference latency:

C(m;Hi) = max(M(m;Hi)− Ti, 0), (9)

i.e., zero when the inference latency is below the constraint,
and a linear function of the latency otherwise.

TABLE I: Result on ImageNet. “Acc.” denotes model accu-
racy, while “Lat.’ denotes inference latency in milliseconds.

Device CPU GPU
Model Acc. Lat. Acc. Lat.

ResNet18 87.62 84.7 88.49 26.7
MnasNet 87.18 27.7 88.13 23.3
MobileNetV3 87.24 30.1 88.53 22.6

DARTS 87.12 59.1 87.84 37.2
One-Shot NAS 84.99 31.2 86.49 27.1
ProxylessNAS 87.79 43.0 88.75 30.5
FBNetV2 87.48 29.2 88.70 20.2

CCDNAS (ours) 88.14 30.9 89.63 23.7

F. Optimization procedure

By combining the standard cross-entropy loss LCE for image
classification and other losses defined in the subsections above,
we can obtain the final loss objective. We use hyper-parameters
λ1, λ2, and λ3 to control the impact of losses:

Lall = LCE + λ1Lfeat + λ2Lreg + λ3Lh (10)

The parameters on each device are synchronized to their
average value over all devices [18] during searching. In this
way, knowledge learned from different devices and datasets
can be shared, while customized architectures can be obtained
for each device in a differentiable manner.

IV. EXPERIMENTS

A. Experimental setup

To compare the performance of different NAS algorithms in
cross-device scenarios, we construct non-IID image datasets
with distribution differences and store different parts of the
datasets in different devices, simulating the real cross-device
scenario. Specifically, we adopt two classes of devices with
large differences in performance, i.e., CPUs and GPUs, in our
experiments. We provide the details as follows.

a) Datasets: We use two datasets, ImageNet and CIFAR-
10, in our experiments. For each dataset, we divide it into
multiple non-IID subsets, which are assigned to the devices in
our experiments.

b) Baseline: To demonstrate the effectiveness of our
method, we compare our method with a manually-designed ar-
chitecture ResNet18 [19], several architectures found by NAS
methods including MnasNet [8] and MobileNetV3 [14], NAS
methods including DARTS [2] and One-Shot NAS [20], and
hardware-aware NAS methods including ProxylessNAS [15]
and FBNetV2 [6].

c) Search space: For ImageNet, we take the search space
from FBNetV2 [6], which is a lightweight layer-wise space for
efficient neural networks. For CIFAR-10, as the images are of
smaller sizes (32× 32), we modify the search space to fit its
size, and the macro-architecture search space for CIFAR-10 is
shown in the appendix.
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Fig. 2: The change in selection parameters during searching. The results indicate that our proposed method can converge faster
than FBNetV2 using the same search space.

d) Devices and hardware metric constraints: On Im-
ageNet, we adopt two devices. The first device is a CPU
(Intel(R) Xeon(R) Gold 6330). The second device is a GPU
(NVIDIA GeForce RTX 3090). For CIFAR-10, we adopt three
devices. The first device is a CPU (Intel(R) Xeon(R) Gold
6330 CPU). The second device is a CPU (AMD EPYC 7642
48-Core Processor). The third device is a GPU (NVIDIA
GeForce RTX 3090). On both datasets, we choose inference
latency as the hardware metric in our experiments.

B. Results on ImageNet

The results are shown in Table I. It can be seen that model
accuracy does not increase monotonically with their inference
latency. Instead, some architectures are able to achieve higher
accuracy with lower latency. With similar performance in la-
tency, the architecture searched by our method on each device
achieves the highest accuracy compared to other methods.
Moreover, we use the same search space as FBNetV2 on
ImageNet, but the architectures we obtain are more efficient
and effective. The results demonstrate that our method can
integrate information from all devices and datasets during the
search process and customize suitable architectures for each
device and dataset.

Fig. 2 further shows the change in operator selection param-
eters and shape selection parameters during the search process.
It can be seen that in the early stage of the search, there is no
clear preference among the choices in operators and shapes. As
the search process goes on, some operators and shapes show
significantly higher choice parameters than others, indicating
that our search process has learned preferences on these
architecture designs. Besides, our method converges faster than
FBNetV2 based on the same search space. A plausible reason
is that our method can effectively learn device and dataset
characteristics through the joint dataset and device feature
extractor, making architecture search easier. We provide addi-
tional analysis on the choice of architectures in the appendix.

C. Results on CIFAR-10

The results are shown in Table II. Similar to the results
on ImageNet, our proposed method obtains a better tradeoff
between accuracy and latency in general. Although DARTS

TABLE II: Result on CIFAR-10. “Acc.” denotes model accu-
racy, while “Lat.’ denotes inference latency in milliseconds.

Device CPU1 CPU2 GPU
Model Acc. Lat. Acc. Lat. Acc. Lat.

ResNet18 88.51 4.0 72.41 5.9 73.76 3.7
DARTS 90.70 66.1 73.98 90.3 77.30 47.4
One-Shot NAS 89.30 14.4 73.02 19.3 75.29 10.8
ProxylessNAS 91.51 189.3 75.98 262.5 79.72 161.8
FBNetV2 89.85 11.5 72.50 11.4 75.51 7.6

CCDNAS (ours) 90.23 13.8 74.30 12.2 76.61 5.2

TABLE III: Results of the ablation study. “Acc.” denotes
model accuracy.

Device CPU GPU
Method Acc. Acc.

No dataset features 85.77 87.14
No device features 81.33 83.49
No architecture customization 87.18 88.02
Single-device 87.50 88.62

CCDNAS 88.14 89.63

and ProxylessNAS have higher accuracy, their latency is
very high. On the other hand, though One-Shot NAS can
obtain efficient architectures, its search architectures are not
as effective. Compared with FBNetV2, our method achieves
better accuracy under similar latency limits. In comparison,
the models we search for have much lower inference latency
and overall higher accuracy. The results show that our method
is indeed capable of customizing suitable models for different
devices with latency constraints.

D. Ablation study

We conduct ablation experiments to explore the function of
each module of our method. In the experiments, one or both
of the feature extraction modules or the parameter synchro-
nization mechanism is removed, while all other settings, such
as devices and latency limits, are kept the same. The results
for ImageNet are shown in Table III, while results on CIFAR
show similar patterns. It can be seen that our method has the
highest accuracy when all modules are used together, showing



that each module of our proposed framework is essential.
Additionally, the results with no dataset features are better than
with no device features, suggesting that device features, while
being easier to learn, have a greater impact on architecture
choices under the same latency limits. The results with no
architecture customization are close to the single-device NAS
methods in Table I, which shows that the dataset features and
device features play a great role in our search process.

V. CONCLUSION

We propose a novel cross-device NAS method called CCD-
NAS to customize the optimal neural architecture for each
device in cross-device learning scenarios with non-IID image
datasets. We design a joint dataset amd device feature extrator
to learn the characteristics of device and dataset, and then
use the prototype matching method to customize operator
parameters and shape parameters of the model for each
device. Experimental results show that our proposed method
outperform the existing NAS methods on the ImageNet and
CIFAR-10 dataset in cross-device scenarios.
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